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Introduction



Motivation

▶ Overarching goal: solve QFT in the strong coupling limit

Figure: QCD running coupling (Navas et al. 2024)



Motivation

▶ First, tackle CFT in the strong coupling limit

UV CFT
IR CFT

▶ Two and three-point functions fully constrained → CFT data
{∆i , λjkl} + OPE → conformal bootstrap

O1(x)O2(0) =
∑
O

C12O(x , ∂)O(0) (1.1)



Why long-range CFTs

▶ Conformal symmetry in 1D → stress tensor vanishes in local
theories! Given a local operator O(x):

[T ,O(x)] = 0 since T = 0 (1.2)

▶ Statement lifts to position-independence of observables

▶ Non-trivial correlators in 1D CFT require absence of a stress
tensor → non-local theory



Long-range Ising and Lee-Yang models



Long-Range Ising Model

SLORI[ϕ] =
Kσ

2

∫
ddxddy

ϕ(x)ϕ(y)

|x − y |d+σ
+

λ

4!

∫
ddxϕ4(x) (2.1)

Figure: Phase diagram of LORI (figure from Bianchi, LSC, and de
Sabbata 2024). Proof of conformal invariance in Paulos et al. 2016.



Long-Range Lee-Yang Model

SLORALY[ϕ] =
Kσ

2

∫
ddxddy

ϕ(x)ϕ(y)

|x − y |d+σ
+

ig

3!

∫
ddxϕ3(x) (2.2)

Figure: (Wikipedia) Zeros of the partition function of the Ising model
(Yang and Lee 1952; Lee and Yang 1952; Cardy 2023)).



AdS perspective

Figure: (Wikipedia) ∂AdS is conformal to a cylinder.

▶ Massive local scalar field in the bulk
▶ Integrate out bulk → Non-local action on ∂AdS (Witten

1998):

S ∼
∫

ddxddy
ϕ(x)ϕ(y)

|x − y |d+σ
+ boundary interactions (2.3)



ε-expansion

▶ Set scaling dimension ∆ϕ = d−ε
4 (LORI), d−ε

3 (LORALY)

▶ λ∗ ∝ ε and g∗ ∝
√
ε

▶ Non-local GFF action → no wavefunction renormalization for
generic d!

∝ Γ

(
−d

4

)
+ O(ε) (LORI) (2.4)

∝ Γ

(
−d

6

)
+ O(ε) (LORALY) (2.5)

▶ Can recover local theory for d → 4 or 6 (Bianchi, LSC, and de
Sabbata 2024)



Hamiltonian Truncation



General idea

▶ Determine the spectrum of

H = H0 + V = H0 + g : (OL(0) +OR(0)) : (3.1)

▶ Normal-ordered operators on R× S0 cylinder

R× {−1} R× {+1}

▶ H0 can be a free theory, a solvable 2D CFT...

▶ Decompose Hilbert space into low and high-energy subspaces
H = Hl ⊕Hh using some cutoff ∆T

▶ Approximate low-energy spectrum via diagonalization of H|Hl



Radial Quantization
▶ Natural choice of H0 for CFT, the dilatation operator:

H0 = D =
∑
n

(∆ + n)a†nan (3.2)

▶ Field operators on the cylinder:

ϕR(τ) =
∞∑
n=0

√
(2∆ϕ)n

n!

[
e−(∆ϕ+n)τan + e(∆ϕ+n)τa†n

]
ϕL(τ) =

∞∑
n=0

(−1)n
√

(2∆ϕ)n
n!

[
e−(∆ϕ+n)τan + e(∆ϕ+n)τa†n

]
(3.3)

▶ Fock basis:

|k⃗⟩ =
∞∏
i=0

1√
ki !

(a†ni )
ki |0⟩ (3.4)



Radial Quantization

▶ Matrix elements:

⟨k⃗ ′| : ϕn
L(0) + ϕn

R(0) : |k⃗⟩

= 2n!
∑

∑
r (mr+sr )=n∑

r r(mr+sr )∈2N

δ
k⃗′,k⃗−m⃗+s⃗

∏
r

1

mr !sr !

√[
(2∆ϕ)r

r !

]sr+mr

(kr −mr + 1)mr (kr −mr + 1)sr

(3.5)

▶ Can organize Fock states by parity or Z2 sectors → block
diagonalization



Tuning to the fixed point

▶ Truncate spectrum at ∆T , work at a given ∆ϕ

▶ Include all relevant symmetry-preserving counter-terms

H → H0 +
∑
O

gO : (OL(0) +OR(0)) : (3.6)

▶ Read off dimension of ϕ, ∆
(1)
ϕ , namely first Z2-odd,

parity-even state → in general ∆
(1)
ϕ ̸= ∆ϕ

▶ Write as many conformality constraints as there are relevant
couplings

{
∆ϕn−1 = 1−∆

(1)
ϕ ϕn-theory e.o.m.

∆∂mϕ = ∆
(1)
ϕ +m existence of some descendants

(3.7)



Case of LORI/LORALY

▶ Normal-ordered interacting Hamiltonian:

HLORI = H0 +
λ

4!
:
(
ϕ4
L(0) + ϕ4

R(0)
)
: +g2

(
ϕ2
L(0) + ϕ2

R(0)
)
: +Λ41

(3.8)

HLORALY = H0+
ig

3!
:
(
ϕ3
L(0) + ϕ3

R(0)
)
: +g2

(
ϕ2
L(0) + ϕ2

R(0)
)
: +Λ31

(3.9)

▶ Constraints:


∆ϕ3 = 1−∆

(1)
ϕ (LORI)

∆ϕ2 = 1−∆
(1)
ϕ (LORALY)

∆∂ϕ = ∆
(1)
ϕ + 1 existence of some descendants

(3.10)



Numerical results for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Numerical results for LORALY

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Comparison with Rayleigh-Schrödinger perturbation theory

▶ Weak coupling limit → comparison with known perturbative
expansions in QM

∆
k⃗
= ∆

(0)

k⃗
+ ⟨k⃗|V |k⃗⟩+

∑
l⃗ ̸=k⃗

⟨k⃗|V |⃗l⟩⟨l⃗ |V |k⃗⟩
∆

k⃗
−∆

l⃗

+ O(V 3) (3.11)

▶ All first order corrections for ϕ2n theory

∆
k⃗
= ∆

(0)

k⃗
+2g

∑
∑

mr=n

∏
r

1

mr !2

[
(2∆ϕ)r

r !

]mr

(kr−mr+1)mr+O(g2
2n)

(3.12)



Comparison with Rayleigh-Schrödinger perturbation theory

▶ Can conduct the previous tuning procedure to conformal fixed
point


∆1 = O(g2

2n)

∆ϕ = 1
2n − ε

2n + O(g2
2n)

∆ϕ2n−1 = 2n−1
2n (1− ε) + 2g2n

n!2
(2n−1)!
(n−1)! + O(g2

2n)

∆∂mϕ = 1−ε
2n +m + O(g2

2n)

(3.13)

▶ Solution to (3.13) → fixed point couplings. Counter-terms are
O(ε2) and

g∗
2n =

n!2(n − 1)!

2(2n − 1)!
ε+ O(ε2) (3.14)

▶ Recover λ∗ ∼ ε/3 for LORI → same as ε-expansion



Comparison with Rayleigh-Schrödinger perturbation theory

▶ Can solve for all first order corrections in one-dimensional ϕ2n

theory, including LORI:

∆(∂ lϕ)k = k

(
1

2n
+ l

)
+

[
k!Γ

(
l + 1

n

)n
(n − 1)!

l!n(k − n)!Γ
(
1
n

)n
(2n − 1)!

− k

2n

]
ε+O(ε2) ,

(3.15)

▶ More challenging for LORALY. Need O(g2) corrections, which
are very sensitive to truncation and involve sums over a
plethora of states



Effective Hamiltonians



Integrating out high energy modes

▶ Assuming ϕ = ϕl + ϕh for some UV cutoff Λ

Z =

∫
D[ϕ]e−S[ϕ] =

∫
D[ϕl , ϕh]e

−S[ϕl ,ϕh]

=

∫
D[ϕl ]e

−Seff[ϕl ]
(4.1)

▶ We know that in general Seff[ϕl ] ̸= S [ϕl ]

▶ Our previous approach is loosely akin to saying Seff[ϕl ] = S [ϕl ]

▶ Analogously, one should construct an effective Hamiltonian
Heff



Effective Hamiltonian

⟨f |Heff|i⟩ = ⟨f |H0|i⟩+ ⟨f |V |i⟩+
∑

∆j>∆T

⟨f |V |j⟩⟨j |V |i⟩
∆f −∆j

+ O(V 3)

(4.2)

▶ Improves accuracy at low cutoff → good for diagonalization

▶ Can be extended systematically, higher orders listed in Cohen
et al. 2022; Miró and Ingoldby 2023

▶ In principle as many constructions as there are schemes for
quantum mechanical perturbation theory (e.g.
Schrieffer-Wolff)



Example: improved agreement with perturbation theory in
LORI

Solid lines: ε-expansion prediction; scatter plots: effective Hamiltonian truncation.

Include heavy states for next-to-leading order computation for ∆T ≤ ∆ ≤ ∆T +∆h.



UV divergences in the effective theory

▶ Using radial quantization, can show that the following diverges

⟨0|Heff 2|0⟩ := −g2
∑

∆
k⃗
>∆T

|⟨k⃗ | : ϕn
L(0) + ϕn

R(0) : |0⟩|2

∆
k⃗

(4.3)

▶ Using explicit matrix elements

⟨0|Heff 2|0⟩ ⊃ 2n!g2

∫ 1

0
dxxn∆ϕ−1(1−x)−2n∆ϕ ∝ Γ (1− 2n∆ϕ)

(4.4)

▶ Diverges when n∆ϕ ≥ 1
2

▶ Renormalized effective Hamiltonian developed in Miró and
Ingoldby 2023 and used for minimal models in Delouche,
Elias Miro, and Ingoldby 2024



Conclusion

▶ 1D LORI and LORALY are useful benchmarks for Hamiltonian
truncation

▶ Effective Hamiltonian improves convergence even at low cutoff

▶ Could push ε-expansion further for more systematic
comparisons. E.g. 3-loop results exist for LORI (Benedetti
et al. 2020)

▶ Try to improve numerics for LORALY → sign problem?

▶ Try to extract LORI and LORALY OPE coefficients using
Hamiltonian truncation

▶ Goal: connect Hamiltonian truncation to bootstrap results.



Thank you!
Questions?



Renormalization of LORI

▶ One and two-loop corrections to ϕ4 vertex:

One-loop correction Two-loop correction Two-loop correction

Two-loop β-function

βλ(λ) = −ελ+ 3λ2 − 35.4851λ3 + O(λ4) (5.1)

Fixed point

λ∗ =
ε

3
+ 1.31426ε2 + O(ε3) (5.2)



Some physical observables in LORI

▶ Some exact, some at at one, some at two loops

∆ϕ =
1

4
− ε

4
, (5.3)

∆ϕ3 = 1−∆ϕ =
3

4
+

ε

4
, (5.4)

∆ϕ4 = 1 +
∂βλ
∂λ

∣∣∣∣
λ=λ∗

= 1 + ε− 2.94279ε2 + O(ε3) , (5.5)

∆ϕ2 =
1

2
− ε

6
+ 0.657131ε2 + O(ε3) , (5.6)

∀m ∈ N,∆∂mϕ = m +∆ϕ =
1 + 4m

4
− ε

4
, (5.7)

∀n ∈ N,∆ϕn =
n

4
+

n(2n − 5)

12
ε+ O(ε2) . (5.8)



Renormalization of LORALY

▶ One and two-loop corrections to ϕ3 vertex:

One-loop correction Two-loop correction Two-loop correction

Two-loop β-function

βg (g) = −εg + 31.7995g3 − 14521g5 + O(g5) (5.9)

Fixed point

g2
∗ = 0.031447ε+ 0.451582ε3 + O(ε3)



Some physical observables in LORALY

▶ Some exact, some at at one, some at two loops

∆ϕ =
1

3
− ε

3
, (5.10)

∆ϕ2 = 1−∆ϕ =
2

3
+

ε

3
, (5.11)

∆ϕ3 = 1 +
∂βg
∂g

∣∣∣∣
g=g∗

= 1 + 2ε− 28.7202ε2 + O(ε3) , (5.12)

∀m ∈ N,∆∂mϕ = m +∆ϕ =
1 + 4m

4
− ε

4
, (5.13)

∀n ∈ N,∆ϕn =
n

3
+

n(3n − 5)

6
ε+ O(ε2) . (5.14)



Conformality constraints for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORI

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Conformality constraints for LORALY

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORALY

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Additional results for LORALY

Solid lines: ε-expansion prediction; points: numerical Hamiltonian truncation.



Matching observables

How do we go about building an effective Hamiltonian? Following
Cohen et al. 2022, match physical quantity in effective and
fundamental theories.

▶ Define an effective Hamiltonian with Hk = O(V k):

Heff = H0 + H1 + H2 + . . . , (5.15)

▶ S-matrix:

⟨f |Σ(ϵ)|i⟩ := lim
tf →∞

⟨f |UI (tf , 0)|i⟩ . (5.16)

▶ Transition matrix T → observable to be matched between
effective and fundamental theory:

⟨f |Σ|i⟩ = δfi +
⟨f |T |i⟩
∆fi + iϵ

, (5.17)



Matching observables
▶ Adiabatically turn off interactions

H = H0 + Ve−ϵt (5.18)

▶ Time-dependent perturbation theory Dyson series:

UI (tf , 0) = T exp

(
−i

∫ tf

0
dtHI (t)

)
(5.19)

▶ Expanding and taking matrix elements in the fundamental
theory:

⟨f |T |i⟩ = ⟨f |V |i⟩+
∑
α

⟨f |V |α⟩⟨α|V |i⟩
∆f α + iϵ

+ O(V 3) . (5.20)

▶ Same in the effective theory:

⟨f |T |i⟩ = ⟨f |H1|i⟩+⟨f |H2|i⟩+
∑

∆α≤∆T

⟨f |H1|α⟩⟨α|H1|i⟩
∆f α + iϵ

+O(V 3) .

(5.21)



Example: improved agreement with perturbation theory in
LORI

(a) (b)

Solid lines: ε-expansion prediction; scatter plots: effective Hamiltonian truncation (a)

naive truncation (b). The effective Hamiltonian at lower truncation can yield better

results!



UV divergences: general picture

▶ E.g. vacuum energy. Assume interaction Lagrangian
∼ gO(x).

E0 = − 2π
d
2

Γ
(
d
2

) ∞∑
n=0

(−g)n

n!

∫ n−1∏
i=1

ddxi |xi |∆−d⟨O(x1) . . .O(xn−1)O(1)⟩c0 .

(5.22)

▶ n-th order correction diverges for

∆ ≥ n − 1

n
d (5.23)

and all corrections diverge at marginality.



UV divergences in the effective theory
▶ Using radial quantization, can show that the following diverges

⟨0|Heff 2|0⟩ := −g2
∑

∆
k⃗
>∆T

|⟨k⃗ | : ϕn
L(0) + ϕn

R(0) : |0⟩|2

∆
k⃗

.

(5.24)
▶ Using explicit matrix elements

⟨k⃗| : ϕn
L(0)+ϕn

R(0) : |0⟩ = 2n!
∏
r

√
1

kr !

(
(2∆ϕ)r

r !

)kr

, (5.25)

▶ which leads to

⟨0|Heff 2|0⟩ = 4n!g2
∞∑

N=0

a2N
n∆ϕ + 2N

, (5.26)

∀N ∈ N, aN := n!
∑

∑
kr r=2N∑
kr=n

∏
r

1

kr !

(
(2∆ϕ)r

r !

)kr

, (5.27)



UV divergences in the effective theory

⟨0|Heff 2|0⟩ = 4n!g2
∞∑

N=0

(2n∆ϕ)2N
(2N)!(n∆ϕ + 2N)

= 4n!g2

∫ 1

0
dx

∞∑
N=0

(2n∆ϕ)2N
(2N)!

xn∆ϕ+2N−1

= 2n!g2

∫ 1

0
dxxn∆ϕ−1

[
(1− x)−2n∆ϕ + (1 + x)−2n∆ϕ

]
.

(5.28)

▶ Recover same type of divergence as that obtained via vacuum
bubble graphs!

⟨0|Heff 2|0⟩ ⊃ 2n!g2

∫ 1

0
dxxn∆ϕ−1(1− x)−2n∆ϕ ∝ Γ (1− 2n∆ϕ) .

(5.29)



A general prescription for renormalization

Steps from Miró and Ingoldby 2023:

▶ Start from the bare Hamiltonian, which contains, H0 + V .

▶ Introduce a UV regulator ϵ:

⟨O1(x1) . . .On(xn)⟩ →

〈
O1(x1) . . .On(xn)

∏
i<j

θ(|xi − xj | − ϵ)

〉
(5.30)

▶ Absorb ϵ divergences in counter-terms to order M in ϵ:

H = H0 + V → H = H0 + V (ϵ) (5.31)

▶ Write the effective theory to order M. Arrive at some

H0 + K (ϵ) →
ϵ→0

H0 + K finite (5.32)



Renormalized effective theory for 1D CFT

▶ Start from the (Hermitian conjugate of) next-to-leading order
effective Hamiltonian

⟨f |H(2)
eff |i⟩ = g2

∑
h

⟨f |ϕ∆(0)|h⟩⟨h|ϕ∆(0)|i⟩
∆ih

= −g2

∫ 0

−∞
dτ

∑
h

eτ∆hi ⟨f |ϕ∆(0)|h⟩⟨h|ϕ∆(0)|i⟩ .

(5.33)

▶ Time evolve using exponential factors and go to the plane:

⟨f |H(2)
eff |i⟩ = −2g2

∫ 1

−1
dx |x |∆−1

∑
h

⟨f |ϕ∆(1)|h⟩⟨h|ϕ∆(x)|i⟩ .

(5.34)



Renormalized effective theory for 1D CFT

▶ Ignore
∑

|h⟩⟨h| for now and insert complete set of operators
(radial quantization relative to 1) and single out |1− x | < 1
region:

⟨f |H(2)
eff |i⟩ ⊃ −2g2

∑
O

∫ 1

0
dx |x |∆−1⟨Of (∞)O(1)Oi (0)⟩⟨O(∞)ϕ∆(1)ϕ∆(x)⟩

(5.35)

▶ x-dependent 3-point function ∝ |1− x |−2∆−∆Omight diverge
as x → 1 → introduce ϵ regulator:

⟨f |H(2)
eff |i⟩ ⊃ −2g2

∑
O

⟨f |O(1)|i⟩
∫ 1−ϵ

0
dx |x |∆−1⟨O(∞)ϕ∆(1)ϕ∆(x)⟩

(5.36)



Renormalized effective theory for 1D CFT

▶ To reintroduce sum over heavy states, need to account for
scaling dimension of |i⟩ → sum over |h⟩ such that
∆h > ∆T −∆i .

▶ Expanding three-point function, reintroducing
pseudo-complete set over heavy states and performing x
integration:

H
(2)
eff (ϵ)fi = −2g2

∑
O

⟨f |O(1)|i⟩λO∆∆

∑
2n>∆′

T,i

[1 + (1− ϵ)2n+∆](2∆−∆O)2n

(2n)!(2n +∆)
+O(ϵ0) .

(5.37)

where ∆′
T ,i := ∆T −∆i −∆ depends on the initial state.



Renormalized effective theory for 1D CFT

▶ Step 1: introduce local counter-terms to full Hamiltonian,
defining gO = gO

ren + gO
ct (ϵ):

H0+V → H0+V +
∑

2∆−∆O≥1

gO : (OL(0)+OR(0)) : (5.38)

▶ Choose counter-term so as to absorb ϵ poles from effective
theory

gct(ϵ) = g2

∫ 1−ϵ

0
dx |x |∆−1⟨O(∞)ϕ∆(1)ϕ∆(x)⟩

= g2λO∆∆

∞∑
n=0

[1 + (1− ϵ)2n+∆](2∆−∆O)2n
(2n)!(2n +∆)

.

(5.39)



Renormalized effective theory for 1D CFT

▶ Step 2: Truncate to some cutoff ∆T and introduce
next-to-leading order effective correction corresponding to the
theory with counter-terms:

(Heff 2)fi =
∑

2∆−∆O>1

gO
ren⟨f |O(1)|i⟩

+ 2g2
∑

2∆−∆O≥1

⟨f |O(1)|i⟩λO∆∆

∑
0≤2n≤∆′

T,i

(2∆−∆O)2n

(2n)!(2n +∆)
+ . . .

(5.40)

▶ Step 3: Can now safely take ϵ → 0 limit. Arrive at H0 + K
with

K2 =
∑

2∆−∆O≥1

⟨f |O(1)|i⟩

gO
ren + 2g2λO∆∆

∑
0≤2n≤∆′

T,i

(2∆−∆O)2n

(2n)!(2n +∆)

+ . . . (5.41)
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