Hamiltonian Truncation in 1D Long-Range CFTs

Leonardo S. Cardinale

Supervisor: Miguel F. Paulos

Laboratoire de Physique de l'Ecole Normale Supérieure – PSL

July 1st, 2025

Outline

Introduction

Long-range Ising and Lee-Yang models

Hamiltonian Truncation

Effective Hamiltonians

Conclusion

Introduction

Motivation

Overarching goal: solve QFT in the strong coupling limit

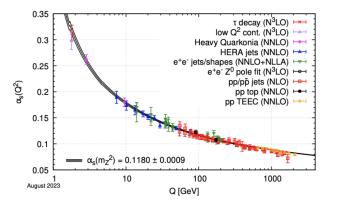


Figure: QCD running coupling (Navas et al. 2024)

Motivation

First, tackle CFT in the strong coupling limit

Two and three-point functions fully constrained \rightarrow CFT data $\{\Delta_i, \lambda_{jkl}\}$ + OPE \rightarrow conformal bootstrap

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_{\mathcal{O}} C_{12\mathcal{O}}(x,\partial)\mathcal{O}(0)$$
 (1.1)

Why long-range CFTs

▶ Conformal symmetry in $1D \rightarrow$ stress tensor vanishes in local theories! Given a local operator $\mathcal{O}(x)$:

$$[T, \mathcal{O}(x)] = 0 \text{ since } T = 0 \tag{1.2}$$

- Statement lifts to position-independence of observables
- Non-trivial correlators in 1D CFT require absence of a stress tensor \rightarrow non-local theory

Long-range Ising and Lee-Yang models

Long-Range Ising Model

$$S_{\text{LORI}}[\phi] = \frac{\mathcal{K}_{\sigma}}{2} \int d^d x d^d y \frac{\phi(x)\phi(y)}{|x-y|^{d+\sigma}} + \frac{\lambda}{4!} \int d^d x \phi^4(x) \qquad (2.1)$$

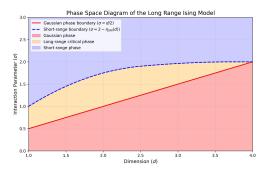


Figure: Phase diagram of LORI (figure from Bianchi, LSC, and de Sabbata 2024). Proof of conformal invariance in Paulos et al. 2016.

Long-Range Lee-Yang Model

$$S_{\text{LORALY}}[\phi] = \frac{\mathcal{K}_{\sigma}}{2} \int d^d x d^d y \frac{\phi(x)\phi(y)}{|x - y|^{d + \sigma}} + \frac{ig}{3!} \int d^d x \phi^3(x) \quad (2.2)$$

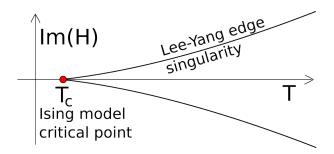


Figure: (Wikipedia) Zeros of the partition function of the Ising model (Yang and Lee 1952; Lee and Yang 1952; Cardy 2023)).

AdS perspective

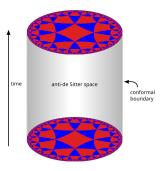


Figure: (Wikipedia) ∂AdS is conformal to a cylinder.

- Massive local scalar field in the bulk
- ▶ Integrate out bulk \rightarrow Non-local action on ∂ AdS (Witten 1998):

$$S \sim \int d^d x d^d y \frac{\phi(x)\phi(y)}{|x-y|^{d+\sigma}} + \text{boundary interactions}$$
 (2.3)

ε -expansion

- ▶ Set scaling dimension $\Delta_{\phi} = \frac{d-\varepsilon}{4}$ (LORI), $\frac{d-\varepsilon}{3}$ (LORALY)
- lacktriangledown $\lambda_* \propto arepsilon$ and $g_* \propto \sqrt{arepsilon}$
- ▶ Non-local GFF action \rightarrow no wavefunction renormalization for generic d!

$$- \sum_{n \in \mathbb{N}} \propto \Gamma\left(-\frac{d}{4}\right) + O(\varepsilon) \quad \text{(LORI)}$$
 (2.4)

$$- \left(-\frac{d}{6} \right) + O(\varepsilon) \quad \text{(LORALY)}$$
 (2.5)

ightharpoonup Can recover local theory for d o 4 or 6 (Bianchi, LSC, and de Sabbata 2024)

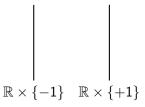
Hamiltonian Truncation

General idea

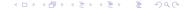
Determine the spectrum of

$$H = H_0 + V = H_0 + g : (\mathcal{O}_L(0) + \mathcal{O}_R(0)) :$$
 (3.1)

▶ Normal-ordered operators on $\mathbb{R} \times S^0$ cylinder



- $ightharpoonup H_0$ can be a free theory, a solvable 2D CFT...
- Decompose Hilbert space into low and high-energy subspaces $\mathcal{H} = \mathcal{H}_I \oplus \mathcal{H}_h$ using some cutoff Δ_T
- lacktriangle Approximate low-energy spectrum via diagonalization of $H_{|\mathcal{H}_I|}$



Radial Quantization

 \blacktriangleright Natural choice of H_0 for CFT, the dilatation operator:

$$H_0 = D = \sum_n (\Delta + n) a_n^{\dagger} a_n \tag{3.2}$$

Field operators on the cylinder:

$$\phi_{R}(\tau) = \sum_{n=0}^{\infty} \sqrt{\frac{(2\Delta_{\phi})_{n}}{n!}} \left[e^{-(\Delta_{\phi}+n)\tau} a_{n} + e^{(\Delta_{\phi}+n)\tau} a_{n}^{\dagger} \right]$$

$$\phi_{L}(\tau) = \sum_{n=0}^{\infty} (-1)^{n} \sqrt{\frac{(2\Delta_{\phi})_{n}}{n!}} \left[e^{-(\Delta_{\phi}+n)\tau} a_{n} + e^{(\Delta_{\phi}+n)\tau} a_{n}^{\dagger} \right]$$
(3.3)

Fock basis:

$$|\vec{k}\rangle = \prod_{i=0}^{\infty} \frac{1}{\sqrt{k_i!}} (a_{n_i}^{\dagger})^{k_i} |0\rangle$$
 (3.4)

Radial Quantization

Matrix elements:

$$\begin{aligned} \langle \vec{k'}| : \phi_{L}^{n}(0) + \phi_{R}^{n}(0) : |\vec{k}\rangle \\ &= 2n! \sum_{\substack{\sum_{r}(m_{r}+s_{r})=n\\\sum_{r}r(m_{r}+s_{r}) \in 2\mathbb{N}}} \delta_{\vec{k'},\vec{k}-\vec{m}+\vec{s}} \prod_{r} \frac{1}{m_{r}!s_{r}!} \sqrt{\left[\frac{(2\Delta_{\phi})_{r}}{r!}\right]^{s_{r}+m_{r}}} (k_{r}-m_{r}+1)_{m_{r}}(k_{r}-m_{r}+1)_{s_{r}} \end{aligned}$$

$$(3.5)$$

▶ Can organize Fock states by parity or \mathbb{Z}_2 sectors \rightarrow block diagonalization

Tuning to the fixed point

- lacktriangle Truncate spectrum at Δ_T , work at a given Δ_ϕ
- Include all relevant symmetry-preserving counter-terms

$$H \rightarrow H_0 + \sum_{\mathcal{O}} g_{\mathcal{O}} : (\mathcal{O}_L(0) + \mathcal{O}_R(0)) :$$
 (3.6)

- ▶ Read off dimension of ϕ , $\Delta_{\phi}^{(1)}$, namely first \mathbb{Z}_2 -odd, parity-even state \to in general $\Delta_{\phi}^{(1)} \neq \Delta_{\phi}$
- Write as many conformality constraints as there are relevant couplings

$$\begin{cases} \Delta_{\phi^{n-1}} = 1 - \Delta_{\phi}^{(1)} & \phi^n\text{-theory e.o.m.} \\ \Delta_{\partial^m \phi} = \Delta_{\phi}^{(1)} + m & \text{existence of some descendants} \end{cases} \tag{3.7}$$

Case of LORI/LORALY

Normal-ordered interacting Hamiltonian:

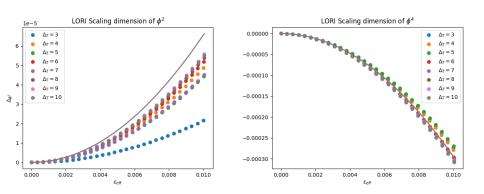
$$H_{LORI} = H_0 + \frac{\lambda}{4!} : \left(\phi_L^4(0) + \phi_R^4(0)\right) : +g_2\left(\phi_L^2(0) + \phi_R^2(0)\right) : +\Lambda_4 \mathbb{1}$$
(3.8)

$$H_{\text{LORALY}} = H_0 + \frac{ig}{3!} : \left(\phi_L^3(0) + \phi_R^3(0)\right) : +g_2\left(\phi_L^2(0) + \phi_R^2(0)\right) : +\Lambda_3 \mathbb{1}$$
(3.9)

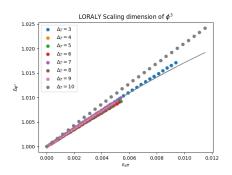
► Constraints:

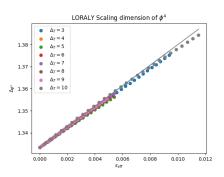
$$\begin{cases} \Delta_{\phi^3} = 1 - \Delta_{\phi}^{(1)} & \text{(LORI)} \\ \Delta_{\phi^2} = 1 - \Delta_{\phi}^{(1)} & \text{(LORALY)} \\ \Delta_{\partial \phi} = \Delta_{\phi}^{(1)} + 1 & \text{existence of some descendants} \end{cases}$$
 (3.10)

Numerical results for LORI



Numerical results for LORALY





Comparison with Rayleigh-Schrödinger perturbation theory

 \blacktriangleright Weak coupling limit \rightarrow comparison with known perturbative expansions in QM

$$\Delta_{\vec{k}} = \Delta_{\vec{k}}^{(0)} + \langle \vec{k} | V | \vec{k} \rangle + \sum_{\vec{l} \neq \vec{k}} \frac{\langle \vec{k} | V | \vec{l} \rangle \langle \vec{l} | V | \vec{k} \rangle}{\Delta_{\vec{k}} - \Delta_{\vec{l}}} + O(V^3) \quad (3.11)$$

▶ All first order corrections for ϕ^{2n} theory

$$\Delta_{\vec{k}} = \Delta_{\vec{k}}^{(0)} + 2g \sum_{\sum m_r = n} \prod_r \frac{1}{m_r!^2} \left[\frac{(2\Delta_{\phi})_r}{r!} \right]^{m_r} (k_r - m_r + 1)_{m_r} + O(g_{2n}^2)$$
(3.12)

Comparison with Rayleigh-Schrödinger perturbation theory

 Can conduct the previous tuning procedure to conformal fixed point

$$\begin{cases}
\Delta_{1} = O(g_{2n}^{2}) \\
\Delta_{\phi} = \frac{1}{2n} - \frac{\varepsilon}{2n} + O(g_{2n}^{2}) \\
\Delta_{\phi^{2n-1}} = \frac{2n-1}{2n} (1-\varepsilon) + \frac{2g_{2n}}{n!^{2}} \frac{(2n-1)!}{(n-1)!} + O(g_{2n}^{2}) \\
\Delta_{\partial^{m}\phi} = \frac{1-\varepsilon}{2n} + m + O(g_{2n}^{2})
\end{cases}$$
(3.13)

▶ Solution to (3.13) \to fixed point couplings. Counter-terms are $O(arepsilon^2)$ and

$$g_{2n}^* = \frac{n!^2(n-1)!}{2(2n-1)!} \varepsilon + O(\varepsilon^2)$$
 (3.14)

▶ Recover $\lambda_* \sim \varepsilon/3$ for LORI → same as ε -expansion

Comparison with Rayleigh-Schrödinger perturbation theory

► Can solve for all first order corrections in one-dimensional ϕ^{2n} theory, including LORI:

$$\Delta_{(\partial^{I}\phi)^{k}} = k\left(\frac{1}{2n} + I\right) + \left[\frac{k!\Gamma\left(I + \frac{1}{n}\right)^{n}(n-1)!}{I!^{n}(k-n)!\Gamma\left(\frac{1}{n}\right)^{n}(2n-1)!} - \frac{k}{2n}\right]\varepsilon + O(\varepsilon^{2}),$$
(3.15)

More challenging for LORALY. Need $O(g^2)$ corrections, which are very sensitive to truncation and involve sums over a plethora of states

Effective Hamiltonians

Integrating out high energy modes

► Assuming $φ = φ_I + φ_h$ for some UV cutoff Λ

$$Z = \int \mathcal{D}[\phi] e^{-S[\phi]} = \int \mathcal{D}[\phi_I, \phi_h] e^{-S[\phi_I, \phi_h]}$$

$$= \int \mathcal{D}[\phi_I] e^{-S_{\text{eff}}[\phi_I]}$$
(4.1)

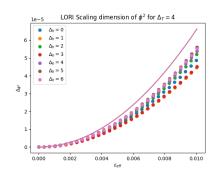
- We know that in general $S_{\text{eff}}[\phi_I]
 eq S[\phi_I]$
- lacktriangle Our previous approach is loosely akin to saying $S_{
 m eff}[\phi_I] = S[\phi_I]$
- Analogously, one should construct an effective Hamiltonian H_{eff}

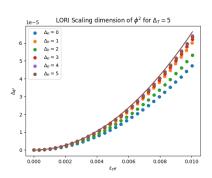
Effective Hamiltonian

$$\langle f|H_{\text{eff}}|i\rangle = \langle f|H_{0}|i\rangle + \langle f|V|i\rangle + \sum_{\Delta_{j} > \Delta_{T}} \frac{\langle f|V|j\rangle\langle j|V|i\rangle}{\Delta_{f} - \Delta_{j}} + O(V^{3})$$
(4.2)

- lacktriangle Improves accuracy at low cutoff ightarrow good for diagonalization
- ► Can be extended systematically, higher orders listed in Cohen et al. 2022; Miró and Ingoldby 2023
- In principle as many constructions as there are schemes for quantum mechanical perturbation theory (e.g. Schrieffer-Wolff)

Example: improved agreement with perturbation theory in LORI





Solid lines: ε -expansion prediction; scatter plots: effective Hamiltonian truncation. Include heavy states for next-to-leading order computation for $\Delta_T \leq \Delta \leq \Delta_T + \Delta_h$.

UV divergences in the effective theory

Using radial quantization, can show that the following diverges

$$\langle 0|H_{\rm eff\ 2}|0\rangle := -g^2 \sum_{\Delta_{\vec{k}} > \Delta_T} \frac{|\langle \vec{k}|: \phi_L^n(0) + \phi_R^n(0): |0\rangle|^2}{\Delta_{\vec{k}}} \quad (4.3)$$

Using explicit matrix elements

$$\langle 0|H_{\mathrm{eff}\;2}|0
angle\supset 2n!g^2\int_0^1dx x^{n\Delta_\phi-1}(1-x)^{-2n\Delta_\phi}\propto\Gamma\left(1-2n\Delta_\phi
ight)$$
 (4.4)

- ▶ Diverges when $n\Delta_{\phi} \geq \frac{1}{2}$
- Renormalized effective Hamiltonian developed in Miró and Ingoldby 2023 and used for minimal models in Delouche, Elias Miro, and Ingoldby 2024

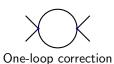
Conclusion

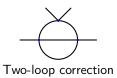
- ► 1D LORI and LORALY are useful benchmarks for Hamiltonian truncation
- Effective Hamiltonian improves convergence even at low cutoff
- ▶ Could push ε -expansion further for more systematic comparisons. E.g. 3-loop results exist for LORI (Benedetti et al. 2020)
- Try to improve numerics for LORALY → sign problem?
- ► Try to extract LORI and LORALY OPE coefficients using Hamiltonian truncation
- ▶ **Goal**: connect Hamiltonian truncation to bootstrap results.

Thank you! Questions?

Renormalization of LORI

▶ One and two-loop corrections to ϕ^4 vertex:





Two-loop β -function

$$\beta_{\lambda}(\lambda) = -\varepsilon\lambda + 3\lambda^2 - 35.4851\lambda^3 + O(\lambda^4)$$
 (5.1)

Fixed point

$$\lambda_* = \frac{\varepsilon}{3} + 1.31426\varepsilon^2 + O(\varepsilon^3) \tag{5.2}$$

Some physical observables in LORI

Some exact, some at at one, some at two loops

$$\Delta_{\phi} = \frac{1}{4} - \frac{\varepsilon}{4} \,, \tag{5.3}$$

$$\Delta_{\phi^3} = 1 - \Delta_{\phi} = \frac{3}{4} + \frac{\varepsilon}{4}, \qquad (5.4)$$

$$\Delta_{\phi^4} = 1 + \frac{\partial \beta_{\lambda}}{\partial \lambda} \bigg|_{\lambda = \lambda_*} = 1 + \varepsilon - 2.94279\varepsilon^2 + O(\varepsilon^3), \quad (5.5)$$

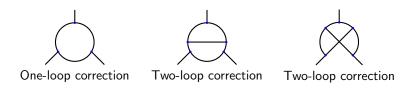
$$\Delta_{\phi^2} = \frac{1}{2} - \frac{\varepsilon}{6} + 0.657131\varepsilon^2 + O(\varepsilon^3),$$
 (5.6)

$$\forall m \in \mathbb{N}, \Delta_{\partial^m \phi} = m + \Delta_{\phi} = \frac{1 + 4m}{4} - \frac{\varepsilon}{4}, \tag{5.7}$$

$$\forall n \in \mathbb{N}, \Delta_{\phi^n} = \frac{n}{4} + \frac{n(2n-5)}{12}\varepsilon + O(\varepsilon^2). \tag{5.8}$$

Renormalization of LORALY

▶ One and two-loop corrections to ϕ^3 vertex:



Two-loop β -function

$$\beta_g(g) = -\varepsilon g + 31.7995g^3 - 14521g^5 + O(g^5)$$
 (5.9)

Fixed point

$$g_*^2 = 0.031447\varepsilon + 0.451582\varepsilon^3 + O(\varepsilon^3)$$

Some physical observables in LORALY

Some exact, some at at one, some at two loops

$$\Delta_{\phi} = \frac{1}{3} - \frac{\varepsilon}{3} \,, \tag{5.10}$$

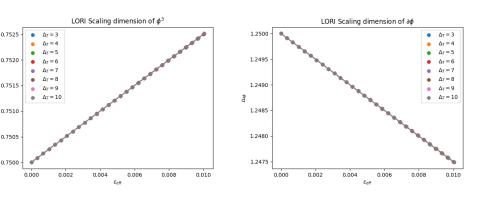
$$\Delta_{\phi^2} = 1 - \Delta_{\phi} = \frac{2}{3} + \frac{\varepsilon}{3}, \qquad (5.11)$$

$$\Delta_{\phi^3} = 1 + \frac{\partial \beta_g}{\partial g} \bigg|_{g=g_*} = 1 + 2\varepsilon - 28.7202\varepsilon^2 + O(\varepsilon^3), \quad (5.12)$$

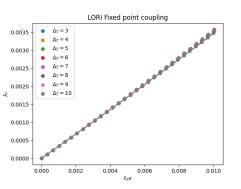
$$\forall m \in \mathbb{N}, \Delta_{\partial^m \phi} = m + \Delta_{\phi} = \frac{1 + 4m}{4} - \frac{\varepsilon}{4},$$
 (5.13)

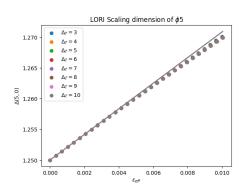
$$\forall n \in \mathbb{N}, \Delta_{\phi^n} = \frac{n}{3} + \frac{n(3n-5)}{6}\varepsilon + O(\varepsilon^2). \tag{5.14}$$

Conformality constraints for LORI

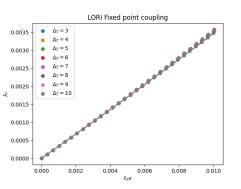


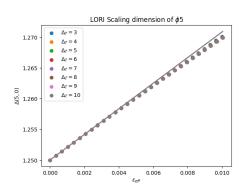
Additional results for LORI



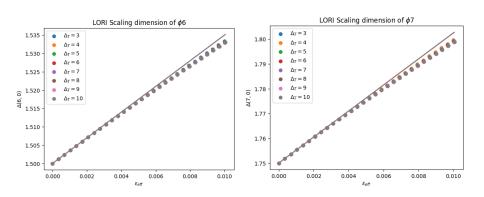


Additional results for LORI

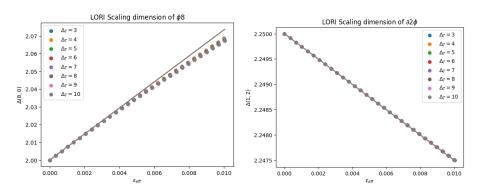




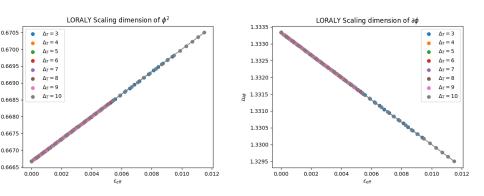
Additional results for LORI



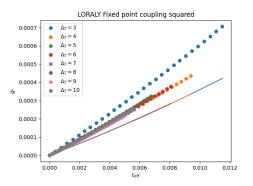
Additional results for LORI



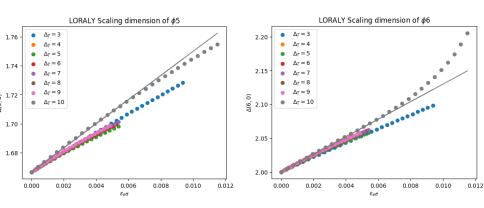
Conformality constraints for LORALY



Additional results for LORALY



Additional results for LORALY



Matching observables

How do we go about building an effective Hamiltonian? Following Cohen et al. 2022, match physical quantity in effective and fundamental theories.

▶ Define an effective Hamiltonian with $H_k = O(V^k)$:

$$H_{\text{eff}} = H_0 + H_1 + H_2 + \dots,$$
 (5.15)

► *S*-matrix:

$$\langle f|\Sigma(\epsilon)|i\rangle := \lim_{t_f\to\infty} \langle f|U_I(t_f,0)|i\rangle.$$
 (5.16)

▶ Transition matrix $T \rightarrow$ observable to be matched between effective and fundamental theory:

$$\langle f|\Sigma|i\rangle = \delta_{fi} + \frac{\langle f|T|i\rangle}{\Delta_{fi} + i\epsilon},$$
 (5.17)

Matching observables

► Adiabatically turn off interactions

$$H = H_0 + Ve^{-\epsilon t} \tag{5.18}$$

► Time-dependent perturbation theory Dyson series:

$$U_I(t_f,0) = T \exp\left(-i \int_0^{t_f} dt H_I(t)\right)$$
 (5.19)

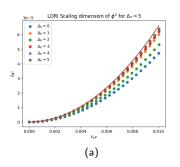
Expanding and taking matrix elements in the fundamental theory:

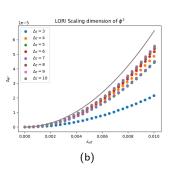
$$\langle f|T|i\rangle = \langle f|V|i\rangle + \sum_{i} \frac{\langle f|V|\alpha\rangle\langle\alpha|V|i\rangle}{\Delta_{f\alpha} + i\epsilon} + O(V^3).$$
 (5.20)

► Same in the effective theory:

$$\langle f|T|i\rangle = \langle f|H_1|i\rangle + \langle f|H_2|i\rangle + \sum_{\Delta_{\alpha} \leq \Delta_{T}} \frac{\langle f|H_1|\alpha\rangle\langle\alpha|H_1|i\rangle}{\Delta_{f\alpha} + i\epsilon} + O(V^3).$$

Example: improved agreement with perturbation theory in LORI





Solid lines: ε -expansion prediction; scatter plots: effective Hamiltonian truncation (a) naive truncation (b). The effective Hamiltonian at lower truncation can yield better results!

UV divergences: general picture

▶ E.g. vacuum energy. Assume interaction Lagrangian $\sim g\mathcal{O}(x)$.

$$E_0 = -\frac{2\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)} \sum_{n=0}^{\infty} \frac{(-g)^n}{n!} \int \prod_{i=1}^{n-1} d^d x_i |x_i|^{\Delta - d} \langle \mathcal{O}(x_1) \dots \mathcal{O}(x_{n-1}) \mathcal{O}(1) \rangle_0^c.$$
(5.22)

n-th order correction diverges for

$$\Delta \ge \frac{n-1}{n}d\tag{5.23}$$

and all corrections diverge at marginality.

UV divergences in the effective theory

▶ Using radial quantization, can show that the following diverges

$$\langle 0|H_{\text{eff 2}}|0\rangle := -g^2 \sum_{\Delta_{\vec{k}} > \Delta_T} \frac{|\langle \vec{k}| : \phi_L^n(0) + \phi_R^n(0) : |0\rangle|^2}{\Delta_{\vec{k}}}.$$
(5.24)

Using explicit matrix elements

$$\langle \vec{k} | : \phi_L^n(0) + \phi_R^n(0) : |0\rangle = 2n! \prod_r \sqrt{\frac{1}{k_r!} \left(\frac{(2\Delta_\phi)_r}{r!}\right)^{k_r}}, (5.25)$$

which leads to

$$\langle 0|H_{\text{eff 2}}|0\rangle = 4n!g^2 \sum_{N=2}^{\infty} \frac{a_{2N}}{n\Delta_{\phi} + 2N},$$
 (5.26)

$$\forall N \in \mathbb{N}, \quad a_N := n! \sum_{\substack{\sum k_r r = 2N \\ \sum k_r = n}} \prod_r \frac{1}{k_r!} \left(\frac{(2\Delta_\phi)_r}{r!} \right)^{k_r}, \quad (5.27)$$

UV divergences in the effective theory

$$\langle 0|H_{\text{eff 2}}|0\rangle = 4n!g^{2} \sum_{N=0}^{\infty} \frac{(2n\Delta_{\phi})_{2N}}{(2N)!(n\Delta_{\phi} + 2N)}$$

$$= 4n!g^{2} \int_{0}^{1} dx \sum_{N=0}^{\infty} \frac{(2n\Delta_{\phi})_{2N}}{(2N)!} x^{n\Delta_{\phi} + 2N - 1}$$

$$= 2n!g^{2} \int_{0}^{1} dx x^{n\Delta_{\phi} - 1} \left[(1 - x)^{-2n\Delta_{\phi}} + (1 + x)^{-2n\Delta_{\phi}} \right].$$
(5.28)

Recover same type of divergence as that obtained via vacuum bubble graphs!

$$\langle 0|H_{\text{eff 2}}|0\rangle \supset 2n!g^2 \int_0^1 dx x^{n\Delta_{\phi}-1} (1-x)^{-2n\Delta_{\phi}} \propto \Gamma(1-2n\Delta_{\phi}).$$
(5.29)

A general prescription for renormalization

Steps from Miró and Ingoldby 2023:

- ▶ Start from the bare Hamiltonian, which contains, $H_0 + V$.
- ▶ Introduce a UV regulator ϵ :

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle \to \left\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \prod_{i < j} \theta(|x_i - x_j| - \epsilon) \right\rangle$$
(5.30)

▶ Absorb ϵ divergences in counter-terms to order M in ϵ :

$$H = H_0 + V \rightarrow H = H_0 + V(\epsilon) \tag{5.31}$$

Write the effective theory to order M. Arrive at some

$$H_0 + K(\epsilon) \underset{\epsilon \to 0}{\rightarrow} H_0 + K \text{ finite}$$
 (5.32)

 Start from the (Hermitian conjugate of) next-to-leading order effective Hamiltonian

$$\langle f|H_{\text{eff}}^{(2)}|i\rangle = g^{2} \sum_{h} \frac{\langle f|\phi_{\Delta}(0)|h\rangle\langle h|\phi_{\Delta}(0)|i\rangle}{\Delta_{ih}}$$

$$= -g^{2} \int_{-\infty}^{0} d\tau \sum_{h} e^{\tau \Delta_{hi}} \langle f|\phi_{\Delta}(0)|h\rangle\langle h|\phi_{\Delta}(0)|i\rangle.$$
(5.33)

Time evolve using exponential factors and go to the plane:

$$\langle f|H_{\text{eff}}^{(2)}|i\rangle = -2g^2 \int_{-1}^1 dx |x|^{\Delta - 1} \sum_h \langle f|\phi_{\Delta}(1)|h\rangle \langle h|\phi_{\Delta}(x)|i\rangle.$$
(5.34)

▶ Ignore $\sum |h\rangle\langle h|$ for now and insert complete set of operators (radial quantization relative to 1) and single out |1-x|<1 region:

$$\langle f|H_{\text{eff}}^{(2)}|i\rangle \supset -2g^2 \sum_{\mathcal{O}} \int_0^1 dx |x|^{\Delta-1} \langle \mathcal{O}_f(\infty) \mathcal{O}(1) \mathcal{O}_i(0) \rangle \langle \mathcal{O}(\infty) \phi_{\Delta}(1) \phi_{\Delta}(x) \rangle$$
(5.35)

▶ x-dependent 3-point function $\propto |1-x|^{-2\Delta-\Delta_{\mathcal{O}}}$ might diverge as $x\to 1\to$ introduce ϵ regulator:

$$\langle f|H_{\text{eff}}^{(2)}|i\rangle \supset -2g^2 \sum_{\mathcal{O}} \langle f|\mathcal{O}(1)|i\rangle \int_0^{1-\epsilon} dx |x|^{\Delta-1} \langle \mathcal{O}(\infty)\phi_{\Delta}(1)\phi_{\Delta}(x)\rangle$$
(5.36)

- ▶ To reintroduce sum over heavy states, need to account for scaling dimension of $|i\rangle$ → sum over $|h\rangle$ such that $\Delta_h > \Delta_T \Delta_i$.
- Expanding three-point function, reintroducing pseudo-complete set over heavy states and performing x integration:

$$H_{\text{eff}}^{(2)}(\epsilon)_{fi} = -2g^2 \sum_{\mathcal{O}} \langle f | \mathcal{O}(1) | i \rangle \lambda_{\mathcal{O}\Delta\Delta} \sum_{2n > \Delta'_{\mathcal{T},i}} \frac{[1 + (1 - \epsilon)^{2n + \Delta}](2\Delta - \Delta_{\mathcal{O}})_{2n}}{(2n)!(2n + \Delta)} + O(\epsilon^0).$$

$$(5.37)$$

where $\Delta'_{T,i} := \Delta_T - \Delta_i - \Delta$ depends on the initial state.

▶ **Step 1**: introduce local counter-terms to full Hamiltonian, defining $g^{\mathcal{O}} = g_{\text{ren}}^{\mathcal{O}} + g_{\text{ct}}^{\mathcal{O}}(\epsilon)$:

$$H_0 + V \to H_0 + V + \sum_{2\Delta - \Delta_{\mathcal{O}} \ge 1} g^{\mathcal{O}} : (\mathcal{O}_L(0) + \mathcal{O}_R(0)) : (5.38)$$

 \blacktriangleright Choose counter-term so as to absorb ϵ poles from effective theory

$$g_{\text{ct}}(\epsilon) = g^2 \int_0^{1-\epsilon} dx |x|^{\Delta - 1} \langle \mathcal{O}(\infty) \phi_{\Delta}(1) \phi_{\Delta}(x) \rangle$$

$$= g^2 \lambda_{\mathcal{O}\Delta\Delta} \sum_{n=0}^{\infty} \frac{[1 + (1 - \epsilon)^{2n + \Delta}](2\Delta - \Delta_{\mathcal{O}})_{2n}}{(2n)!(2n + \Delta)}.$$
(5.39)

▶ **Step 2**: Truncate to some cutoff Δ_T and introduce next-to-leading order effective correction corresponding to the theory with counter-terms:

$$(H_{\text{eff 2}})_{fi} = \sum_{2\Delta - \Delta_{\mathcal{O}} > 1} g_{\text{ren}}^{\mathcal{O}} \langle f | \mathcal{O}(1) | i \rangle$$

$$+ 2g^{2} \sum_{2\Delta - \Delta_{\mathcal{O}} \ge 1} \langle f | \mathcal{O}(1) | i \rangle \lambda_{\mathcal{O}\Delta\Delta} \sum_{0 \le 2n \le \Delta_{T,i}^{\prime}} \frac{(2\Delta - \Delta_{\mathcal{O}})_{2n}}{(2n)!(2n + \Delta)} + \dots$$
(5.40)

▶ **Step 3**: Can now safely take $\epsilon \to 0$ limit. Arrive at $H_0 + K$ with

$$K_{2} = \sum_{2\Delta - \Delta_{\mathcal{O}} \geq 1} \langle f | \mathcal{O}(1) | i \rangle \left(g_{\mathsf{ren}}^{\mathcal{O}} + 2g^{2} \lambda_{\mathcal{O}\Delta\Delta} \sum_{0 \leq 2n \leq \Delta_{T,i}'} \frac{(2\Delta - \Delta_{\mathcal{O}})_{2n}}{(2n)!(2n + \Delta)} \right) + \dots (5.41)$$